MIND
STEP

MODELLING INDIVIDUAL DECISIONS TO
SUPPORT THE EUROPEAN POLICIES RELATED
TO AGRICULTURE

Deliverable D7.1:

Prototype of a wrapper to allow a
standardized communication
channel between the models

AUTHORS Marc Mller (WR), Alexander Gocht (Thuenen)
APPROVED BY WP MANAGER: Alexander Gocht (Thuenen)

DATE OF APPROVAL: 06.07.2021

APPROVED BY PROJECT Hans van Meijl (WR)

COORDINATOR:

DATE OF APPROVAL: 09.07.2021

CALL H2020-RUR-2018-2 Rural Renaissance

WO_RK PROGRAMME Analytical tools and models to support policies related to
Topic RUR-04-2018 agriculture and food - RIA Research and Innovation action
PROJECT WEB SITE: https://mind-step.eu

This document was produced under the terms and conditions of Grant Agreement No. 817566 for the European
Commission. It does not necessary reflect the view of the European Union and in no way anticipates the
Commission’s future policy in this area.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND l , Deliverable 7.1
STEP

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND | l Deliverable 7.1
STEP

TABLE OF CONTENTS
EXECUTIVE SUMMARYiuiiiiiiiiiiiiiiiiiiieiiiiiiiiieineiieiteiieieseestestessasssssesses 3
1. INTRODUCTION ...ccutiuiiiniiiniiiiiiiiiiiieinieiiesiaiseaiissiissiissisasssasssssssssssssssnses 5
2. THE WRAPPER CONCEPTccuuriuiriniiiniiieiiieiiiiiiiieiieiienianiasiesssasssssssss 6
3. WRAPPERS IN AGRO-ECONOMIC MODELLING........cccoturrrurinrenrnnirnncnnnnenn. 7
3.1 SEAIMMLESSAIF e e e e e e e s 7
3.2. GGIG BATCH EXECUTION ...ooooiiiiiiiiiiii, 10
4. THE R LANGUAGE FOR THE MIND STEP TOOLBOXcccceviuniinnrrnnnennnennees 10
5. APROTOTYPE WRAPPER FOR THE FARMDYN MODEL........ccccoeuurunirannnnns 11
6. CONCLUSIONScuiiiiiiiiiiiiiiiiiiiiiiiiiieinieseaisiainsaiseaisssiiasisasssasssasssasssasseanss 12
7. ACKNOWLEDGEMENTS ...c.ctuiiiuiiiniiiniiinininiiiniiiiiiniieniieniieiiaiiensseseanes 13
8. REFERENCESccuiiuiiiuniiiiiiiiiiiiieiiieiniaiieeineaineaiieaiiesiiassiassiassssssnasssasseanes 13
Y o o 1 0t N 14
DEFINE FUNCTION RUNFARMDYNFROMBATCHuutie 14
EXECUTE FUNCTION RUNFARMDYNFROMBATCH ...t 14

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566. 1

MIND l ’ Deliverable 7.1
STEP

ACRONYMS

AML Algebraic Modelling Language

GAMS General Algebraic Modelling System

GDX GAMS Data Exchange Format

GGIG GAMS Graphical Interface Generator

GUI Graphical User Interface

OpenMI Open Modelling Interface

SEAMLESS System for Environmental and Agricultural Modelling; Linking European Science and
Society

SEAMLESS-IF ~ SEAMLESS Integrated Framework

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566. 2

MIND | l Deliverable 7.1
STEP

EXECUTIVE SUMMARY

The MIND STEP toolbox is a suite of models intended to be a modular framework where functionality
can be added with additional models and data and where the models can be executed in flexible
combinations. The latter requires to embed the models in the toolbox following protocols developed
in other work packages (namely WP2.2, WP3.1 and WP4.1) by using software wrappers which permit
the execution of each model from an external environment.

This deliverable 7.1. describes a prototype for a wrapper function targeting a common type of model
in the MIND STEP toolbox. Starting points are an overview on typical model workflows and a pragmatic
definition and operationalization of the wrapper concept. Experiences from the SEAMLES project,
which integrated a set of conceptually different models using wrapper functions are reviewed. An
important observation is that the environment from which the wrappers are called should permit the
handling of complex data structures. Further, it should be an environment modellers without IT
training are familiar with.

The agro-economic simulation models in the MIND STEP toolbox are implemented in an Algebraic
Modelling Language (AML) like the General Algebraic Modelling System (GAMS), some of them make
use of an external interface that facilitates model execution, data entry, and result exploitation.

Based on these observations, a wrapper function implemented in the R programming language is
proposed. It permits the execution of a GAMS-based simulation model, exploiting some of the features
of the applied user interface for model set-up and parallel execution, and the exchange of complex
data structures between models. The R language facilitates handling of complex data structures and
is an environment model developers within MIND TSEP are familiar with, thus the wrapper function
shown here can serve as a prototype to facilitate the integration of the MIND STEP toolbox.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566. 3

MIND l l Deliverable 7.1
STEP

1. INTRODUCTION

The MIND STEP suite of models is intended to be a modular framework where functionality can be
added with additional models and data and where the models can be executed in flexible
combinations. The latter requires to embed the models in the toolbox following protocols developed
in other work packages (namely WP2.2, WP3.1 and WP4.1) by using software wrappers which permit
the execution of each model from an external environment. The wrapper concept reduces the work
to adjust the models for the toolbox and ensures that arguments and data are standardized and well
documented. While it would be preferable to design a generic wrapper, the manifold solutions
foreseen in this project with respect to programming languages and the number of interlinkages,
specific wrappers will be needed. Testing of these wrappers will take place continuously basis and
build up the technical basis for validation work in WP6. The test concept forces models to be
modularized into testable components, which in turn results in a modular and flexible code
architecture.

The implementation of a simulation model usually involves data preparation, model set-up and
parameterization, and reporting as depicted by Figure 1, which are usually separated from model
equations (separation of code from data). Particularly when relying on statistical sources, data
preparation must deal with outliers or missing entries that can impair model execution, performance
and more so plausibility of results. This underlines that the generation of the model database is an
integral part of the model workflow, particularly because it is instrumental for the model set-up and
parametrization in a subsequent step before the model itself is solved.

——_—_—_—__\

Data Data odel Model Model Result Result Reporting
Collection Processingl Database Set-up Statement Database Processing ‘
Y] y=f(x) |

Synthetic

|
Datasets > -
= Q" — —
Core Model U
y O 1= — 1L o]
Statistical U
Datasets I

Figure 1 Typical Model Workflow

Source: Britz et al. 2021

Restricting data preparation, parameterization, model solving and reporting to the currently needed
farm branches, farming systems or relevant policies greatly eases model application. A block of
equations and variables with the related code-blocks for data preparation and reporting, for instance
for dairy farming, can be jointly understood as a module if it can be switched off without impairing
the use of the core model and other modules. The activation of modules can be data or user-driven.
Such a modular design is defined by Russell (2012) as:

“Modularity describes specific relationships between a whole system and its particular components. A modular
system consists of smaller parts (modules) that fit together within a predefined system of architecture. Modules
feature standardized interfaces, which facilitate their integration with the overarching system architecture. A
key feature of each module is that it should encapsulate (or “black box”) its messy internal details |...] to display
only a consistent interface. The designers of modular systems are therefore able to swap modules in a ‘plug-and-
play’ manner, which increases the system’s flexibility.” (Russell, 2012)

5
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND | l Deliverable 7.1
STEP

Flexibility in configuring the simulation model is required for a generic model. A modeller may not be
interested in applying all aspects of a generic model for a given use case. Instead, modules directly
relevant for the research question will be activated and others switched off, for instance by including
a specific set of policies or an alternative objective function. Such flexibility in model set-up keeps each
instance of the model at manageable size and facilitates the parameterization from a case-study
specific database. On the other hand, this flexibility increases the increases the complexity of setting
up a particular instance of the model. Several simulation models in the MIND STEP toolbox feature a
graphical user interface (GUI), sometimes realized with the ,,GAMS Graphical Interface Generator”
GGIG (Britz 2014), to facilitate, for instance, choosing the included modules or the database to use. In
the case of the FARMDYN model, for instance, the GUI permits constructing parts of the model
database, the selection of modules, the steering of the solving algorithm, and the exploitation of
results (highlighted by the green dashed frame in Figure 1). In addition, the parallel execution of many
model instances is also governed by the GUI. To include the models in a workflow that is implemented
in an external programming environment, at least some of the functionality of the GUI, like
parallelization, has to be made available to the user as well.

The following chapters will address the challenges and solutions regarding the development of
wrapper functions that permit the set-up and combined use of models in the MIND STEP toolbox.
After a definition and operationalization of the wrapper concept, some examples of wrappers used in
previous projects are discussed. Finally, a prototype solution for a wrapper in the MIND STEP toolbox
is presented, which permits the set-up and execution of the FARMDYN model from an R environment.

2. THE WRAPPER CONCEPT

In general terms, a wrapper can be understood as a function in a given programming environment
that calls another, more complex function, provides the required arguments, and executes it. The
complexity of the wrapped function is reduced for the user by providing many of the requiring
arguments as defaults, thus limiting the additional user input. A simple example® from the R
programming language would be a function that uses a basic mean(data, removeNotAvailable)
function which takes two arguments: the data for which the mean should be computed and the
information how non-available data (NA) points should be treated. For example, they can either be
included as zero values in the mean calculation, or they can be excluded entirely from the calculation.
If for some reason a program requires a general solution for the treatment of NA values, a wrapper
could be a function that calls the original mean function but sets the argument removeNotAvailable
to “True”. In the R programming language, such a wrapper function would be implemented like this:

In this case, the user has only to provide the data and needs not to worry about other settings of the
wrapped function.

A more complex example is the gplot() function from the ggplot2? package in R, which permits the
creation of advanced plots. It is a shortcut for the rather complex ggplot() function and is designed for

! https://stackoverflow.com/questions/44783295/wrapper-function-in-r

2 https://ggplot2.tidyverse.org/reference/qplot.html

6
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND l ' Deliverable 7.1
STEP

users familiar with more basic plotting functions in R. The function gplot() is therefore a convenience
wrapper for creating selected types of plots using a consistent calling scheme. More complex plots
will require the user to apply ggplot(), so it is not possible to change all default settings when calling

ggplot() through gplot()..

These two examples highlight also the important characteristics of the wrapper concept with regard
to the MIND STEP toolbox: The wrapper function has to enable the programmer to send information
about the data to be used to the target model, activate or deactivate selected modules, and execute
the model, so that retrievable results are generated. These requirements are depicted in Figure 2 for
a model like FARMDYN, which is be governed by a GUI that does not only facilitate user inputs, but
provides also crucial services for, e.g. model parallelization. The wrapper function would take a list of
arguments (“[*,*,*,..]”) that executes the relevant functionalities of the GUI, changes at least some
parts of the model database, provides information on how the model should be set up, and triggers
the relevant modules in the model statement (the “*” in Figure 2 indicate which blocks of the
simulation model are affected).

e | RN

Model Model Model Result
Database Set-up Statement Database

*

wrapper € function([*,*,*,...]) —<

,_——————-‘

Figure 2 Wrapper as function call to a simulation model

3. WRAPPERS IN AGRO-ECONOMIC MODELLING

3.1. SEAMLESS-IF

The project SEAMLESS (System for Environmental and Agricultural Modelling; Linking European Science
and Society)® developed a computerized and integrated framework (SEAMLESS-IF) to assess the impacts
on environmental and economic sustainability of a wide range of policies and technological improvements
across a number of scales (van Ittersum, et al., 2008). Within this integrated framework (SEAMLESS-IF,
Rizzoli et al., 2009)), different type of models are linked into model chains, where each model uses the
outputs of another model as its inputs and ultimately indicators are calculated. SEAMLESS-IF is based on a
layered, client-server architecture. The processing environment facilities, in particular the model chain
executor, are deployed on the SEAMLESS server. An important component of this architecture is the
SeamFrame modelling framework that was purposely designed to develop integrated assessment tools
and offers a series of facilities to encapsulate and wrap existing models for execution by the processing

3 https://www.seamless-ip.org/

X X This project has received funding from the European Union’s Horizon 2020
S research and innovation programme under grant agreement N° 817566.

MIND f ’ Deliverable 7.1
STEP

environment. It allows to deliver model components wrapped by a SeamFrame specific interface,
compliant with the Open Modelling Interface (OpenMI) standard (www.openmi.org), so that it can be
executed by a processing environment. Although the SeamFrame application server operates in Java
environment, the model components can be implemented using other languages as long as they can be
integrated. This requirement has been translated into the fact that model components should be OpenMI
compliant, by implementing the OpenMlI interfaces and allow linking to other components (for data
exchange). The model component can take care of this by itself or a wrapper or bridge can be programmed.

Ontology

Requests

SeamGUI

Servlets Domain
Manager

Processing Y
Environment g
Hibernate

Model

Wrappers Database
Ny 4
> WMs >
| .
Figure 3 SeamFrame overview
Source: https.//www.seamless-

ip.org/DVD_Consortium_SEAMLESS/1_Summary_Overview/Features%20SEAMLESS-IF.pps

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND /gll Deliverable 7.1
STEP
- - SeamFrame : Component Framework
I
1
I
l
: _ APES FSSIM-MP EXPAMOD SEAMCAP
! wrapper wrapper wrapper wrapper
| %
! JAVA FSSIM-AM _‘é
: ®©
: ()
I
i APES FSSIM-MP EXPAMOD SEAMCAP
I
| C# GAMS
I
I
l
1
- Ontology
Figure 4 SeamFrame components
Source: https.//www.seamless-

ip.org/DVD_Consortium SEAMLESS/1_Summary_Overview/Features%20SEAMLESS-IF.pps
https://doi.org/10.1016/j.agsy.2007.07.009

OpenMI however requires the development of an OpenMi compatible wrapper around the GAMS projects
themself. Concepts such as the SEAMLESS-IF are therefore probably only suitable for larger projects
focusing on combining components based on different programming languages. Furthermore, SEAMLESS-
IF is based on a client/server implementation and requires specific software licences for deployment.
Altogether, experiences with SEAMLESS-IF were mixed, which may be caused by the lack of experience
among modellers with general purpose programming languages like JAVA (Britz and Kallrath, 2012).

The core of an economic simulation model consists of numerical problem(s) that require a simultaneous
solution for all equations. This contrasts with environmental models that often integrate smaller
components and are solved recursively in space and time, which asks for a modular design. Compared to
economic models, the resolution of environmental models in space and/or time is often higher, but the
number of items simulated tends to be smaller.

Simultaneous solution approaches in economic models tend to combine all variables and their relations
present in the overall problem in one module. Such simulation models solve for many items such as
different types of prices, output generation, primary factor and intermediate input use, trade, demand
categories, differentiated by product and space, and eventually time. They are frequently build in a
template structure, implemented in an Algebraic Modelling Language (AML). This means that model
equations are structurally identical across space and products, and where applicable across periods, while
differences are expressed in parameters. AMLs allow efficient coding of such template based models.

Economists rely mostly on equations, and, therefore, favour AMLs, whereas environmental modellers
more often additionally use graphical presentations, such as flow charts. They might, therefore, favour
object-oriented approaches or even frameworks that allow building models with the help of GUIs. This is

9
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND | l Deliverable 7.1
STEP

in turn a possible overlap between economic and environmental modelling: Models implemented in an
AML, consisting of many files for data entry, handling, model set-up, execution, and reporting, tend to
become rather complex and difficult to handle. It is for this reason that many economic models, particularly
those in MIND STEP, make use of a GUI to govern their models. A prominent example is discussed in the
next section.

3.2. GGIG Batch Execution

The GAMS Graphical Interface Generator (GGIG, Britz 2012) is a GUI for the execution of complex GAMS
programs. The GUI itself is programmed in JAVA and can be tailored to specific GAMS projects with the
help of an XML file. Apart from data entry and exploitation of results, GGIG provides a set of advanced
features facilitating the parallel execution, testing, and documentation of GAMS projects. Within the MIND
STEP toolbox, the models FARMDYN, IFM-CAP, AGRISPACE, and GLOBIOM make use of GGIG, so they are
already structured and implemented in a way that permits taking advantage of the GUI’s features. One
particular feature of the GUI relevant here is the batch execution facility. This is a tool which:

o Allows executing many different tasks after each other without requiring user input.

e Reports the settings used, any errors and GAMS result codes in a HTML page from which they may
gueried at a later time.

e Ensuresthat each new run generates its own listing file, which can be opened from the HTML page.

o Allows storing the output of the different runs in a separate directory, while reading input from
unchanged result directories.

The purpose of the batch execution facility is therefore at least twofold. On the one hand, it allows setting
up test suits for the GAMS code of a project such as checking for compilation without errors for all tasks
and different settings such as with and without market parts etc. Secondly, production runs of e.g. different
scenarios can be started automatically. Timer facilities allow starting the batch execution at a pre-
scheduled time. Along with functionalities to compare in a more or less automated way differences in
results between versions, the batch facility is one important step towards quality control.

The important contribution of GGIG is to mechanize to the largest extent the generation, storage and later
inspection of meta data underlying a scenario and the related result set, overcoming an often-encountered
weakness in (economic) models because it increases the tractability of data sources and model settings
used for specific scenarios. All settings for a particular model run are stored in a file generated by the GUI,
which consists of a block of text that can be used for the automated execution by the GUI in a batch-file
mode. They can be executed from within the GUI or send to the GUI from another programming
environment. As such, they are a efficient entry point for the development of wrappers for simulation
models making use of the GUI.

4. THE R LANGUAGE FOR THE MIND STEP TOOLBOX

Input data, parameters, and variables appearing in economic simulation models can have complex
structures, consisting of different data types. Support for such data structures was mentioned as a
shortcoming of the SEAMLESS-IF framework and the underlying OpenMI standard from a modeller’s
perspective. Even though more recent versions of OpenMI support more complex data structures and
possibly simultaneous equation models, a major drawback is that modellers often have no IT training and
experience with general purpose programming languages.

The R programming language (https://www.r-project.org/) is a free software environment for statistical
computing and graphics which addresses several of the issues mentioned above: R support functional
programming and the creation of distributable packages that can be flexibly integrated in a program. It

10
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND | l Deliverable 7.1
STEP

supports complex data structures, for instance in the form of data-frames, which can contain data of
different types (numerical, strings). Most of the economic simulation models in the MIND STEP toolbox are
implemented in the AML GAMS (General Algebraic Modelling System), which also features a binary format
for data exchange (GAMS Data Exchange, GDX) with fast reading and writing capabilities. Model data
stored in GDX files (parameters, variables, sets) can be read and written from an R environment by using a
freely available library (gdxrrw) and are directly usable as data-frames. Further, several models feature
connection to R, for instance for statistical data analysis, data handling, and visualization. For instance, to
interface the GLOBIOM database a R routine has been developed, which allows GDX content to be
explored, read, and written. On top of a GLOBIOM visualization interface is provided by the globiomvis R
package. It supports analysis and generation of a variety of scenario plots. In addition, globiomvis enables
creation of maps for the various regionally and spatially explicit representations of the model. The FarmDyn
model has a bridge to R generate sample data for complex experiments and sensitivity analyses. In addition
to simulation models with links to R, there are also examples for data processing routines within the MIND
STEP toolbox implemented in R, like fadnTools and the current prototype for linkages to the Dutch
AgroDataCube (see MIND STEP Deliverable 2.2). This underlines that the use of R has become rather
common in the modeller community and that most project partners are familiar with it.

R libraries (or packages) can account for different needs of groups involved in development, maintenance,
and application of the interfaces. As example the developers of the interface, needs to have a shared
distribution system to commonly develop and extent the interface and deploy. The user group will use the
APl in a more applicable way by loading the APl and applying without any need of changing the function of
the interface itself. With the package deployment in R this concept is easily applicable. For both clients a
good documentation is required. To support the documentation process for the interface, it shall be to a
certain extent generated in an automated way and build up on inline documentation. Besides the
documentation of the interface also a use case documentation is of importance. The R-Mark down
approach allows easily to compile use cases and make them in different formats available, an example is
shown in the next chapter.

5. APROTOTYPE WRAPPER FOR THE FARMDYN MODEL

Based on the experiences and observations described in the previous chapters, choosing R for the
development of model wrappers appears to be a sensible choice. It supports complex data structures, most
partners in MIND STEP are familiar with it, the package concepts facilitates exchange of data and methods,
and model data, namely in GDX format can be readily processed.

While it is possible to execute GAMS programs directly from an R environment, the wide use of GGIG-
based GUIs in the MIND STEP toolbox permits to exploit the advanced and automated functionalities for
model set-up and execution provided by the GUI. The prototype wrapper proposed here is an example
how these functionalities can be used to execute several instances of the FarmDyn model in parallel.

The user has to provide the wrapper function “runFarmDynfromBatch” with the following information:

e Path to the FarmDyn directory

e Name of an xml file that governs the model-specific appearance of the GUI (e.g. GUIsettings.xml),
available by default in the /GUI subdirectory of the FarmDyn directory

e Name of an ini-file that contains user-specific information like the GAMS version to be used (e.g.
userSettings.ini), by default in the /GUI subdirectory of the FarmDyn directory

e Name and location of the scenario file used for the batch execution (scenarioBatch.txt) in a
location chosen by the user

Creating the latter three files can easily be done my launching the GUI, providing the required settings, and
executing the FarmDyn model once. Following the instructions in the GGIG user manual, a marked block

11
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND l l Deliverable 7.1
STEP

of the automatically generated file “runinc.gms” in the /incgen subdirectory of the FarmDyn directory can
be copied to the “scenarioBatch.txt” file. Once these preparatory steps are taken, the model can be
executed from an R environment by calling the function runFarmDynfromBatch. With the paths to the
FarmDyn directory, the two files for the GUI setup (GUISettings.xml, userSettings.ini) and the file for the
scenario specification (scenBatch.txt), the wrapper functions generates a temporary command-file
containing all the relevant information to execute the model within the GUI. A system command to the
GUIExecute.bat file is then issued and the model is run. Figure 5 provides a schematic overview on the
steps and files involved in the use of runFarmDynfromBatch.

pathtoFarmDyn

N f \
Model Model
Generate and / Database se:r:v at: . aesuase

GUISettings.xml system-execute

runFarmDynfromBatch E { . —<

userSettings.ini GUIExecute.bat

N | S
B |\ /
\ scenBatch.txt /

Figure 5 Schematic view of the wrapper “runFarmDynfromBatch”

The R code for the runFarmDynfromBatch wrapper function for the FarmDyn model is shown in Appendix
1. It can also be downloaded from the MIND STEP repository, which requires a password and the additional
installation of the FarmDyn model: https://svnesm.iiasa.ac.at/svn/myrepo/wrappers/trunk/FarmDyn

6. CONCLUSIONS

This report develops a concept for a wrapper function that can be used to execute the models in the MIND
STEP toolbox from an external environment, such that inputs and outputs can be exchanged between
models and results can be combined. For the purposes of this report, a wrapper function was defined as a
function in a certain programming environments that provides defaults arguments combined with user
inputs to a more complex, possibly external function, and executes it. A review of the SEAMLESS-IF
approach (Rizzoli et al., 2009, Knapen et al. 2013) provided important insights in strength and weaknesses
of an application of the wrapper concept in agro-economic and environmental modelling:

e Data exchange between models requires handling of complex data structures, like arrays of mixed
data types (data-frames, dictionaries)

e Modellers are not automatically IT experts and familiar with general purpose programming
languages

e Agro-economic modellers prefer algebraic modelling languages like GAMS

e Modellers are often familiar with statistical or data-handling programming languages

A further observation is that most models used in the MIND STEP toolbox take advantage of the GGIG
program (Britz, 2014) for model execution and visualization, which provides advanced model steering
functionalities and, most importantly for the purposes discussed here, a batch execution facility.

12
This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement N° 817566.

MIND | l Deliverable 7.1
STEP

MIND Step internal surveys on programming practices and modellers experiences, together with personal
communication, showed that most modellers in MIND STEP are at least to some extent familiar with the R
programming language. The R environment permits functional programming, efficient handling of complex
data structures, and a standardized way to develop program libraries in the form of R-packages. Based on
such packages, GAMS-specific data formats can be easily processed.

Based on these observations, a wrapper for the execution of the FarmDyn model exploiting the GGIG
facilities was programmed in R. Inits current state, it requires the execution of the FarmDyn model (or any
other GGIG-driven model) from the GUI to create a set of files that contain a large number of default
settings. Once these files are generated, simple changes can be made rather easily and then used to call
the proposed wrapper function, which permits the parallel execution of several instances of the FarmDyn
model from an R program flow.

The proposed approach is applicable to several models in the MIND STEP toolbox in addition to FarmDyn
(IFM-CAP, AGRISPACE, GLOBIOM) as it exploits functionalities provide by R and GGIG. An important
subsequent step would be the facilitation to generate the needed files solely from an R environment.

In general, wrapper functions implemented in R can help to integrate the MIND STEP models in a modular
and flexible architecture.

7. ACKNOWLEDGEMENTS

This deliverable D7.1: “Prototype of a wrapper to allow a standardized communication channel
between the models” is developed as part of the H2020 MIND STEP project which received funding
from the European Union’s Horizon 2020 research and innovation programme under grant agreement
N° 817566.

8. REFERENCES

Britz, W., 2014. A new graphical user interface generator for economic models and its
comparison to existing approaches. Ger. J. Agric. Econ. 63, 271-285.

Britz, W., Kallrath, J., 2012. Economic simulation models in agricultural economics: the current
and possible future role of algebraic modeling languages., in: Kallrath, J. (Ed.), Algebraic Modeling
Systems: Modeling and Solving Real World Optimization Problems. Springer, Berlin, Heidelberg, pp.
199-212. https://doi.org/10.1007/978-3-642-23592-4

Britz, W., Lengers, B., Kuhn, T., Schéafer, D., 2016. A highly detailed template model for dynamic
optimization of farms-FARMDYN. University of Bonn. Inst. Food Resour. Econ. Version Sept. 147.

Knapen, M.J.R., Janssen, S.J.C., Roosenschoon, O.R., Verweij, P.J.F.M., de Winter, W., Uiterwijk,
M., Wien, J.E. 2013. Evaluating OpenMI as a model inte-gration platform across disciplines. Modelling
& Software 39: 274-282.

Rizzoli, A.E., Wien, J.J.F., Knapen, R., Ruinelli, L., Athanasiadis, . Jonsson, B., 2009. Updated
version of final design and of the architecture of SEAM-LESS-IF Report No.47, SEAMLESS integrated
project, EU 6th Framework Programme, contract no. 010036-2. www.SEAMLESS-IP.org, 31 pp, ISBN
no. 978-90-8585-590-3.

van Ittersum, M.K., Ewert, F., Heckelei, T., Wery, J., Olsson, J.A., Andersen, E., Bezlepkina, I.,
Brouwer, F., Donatelli, M., Flichman, G. and Olsson, L., 2008. Integrated assessment of agricultural
systems—A component-based framework for the European Union (SEAMLESS). Agricultural systems,
96(1-3), pp.150-165.

13
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MIND l , Deliverable 7.1
STEP

APPENDIX 1

Define function runFarmDynfromBatch

runFarmDynfromBatch <- function(FarmDynDir, IniFile, XMLFile, BATCHDir, BA
TCHFile) {

make sub directories
GUIDir <- paste(FarmDynDir,"GUI",sep="/")
BATCHFilePath <- paste(BATCHDir, BATCHFile, sep = "\\")

General JAVA command

javacmdstrg <- r"(java -Xmx1G -Xverify:none -XX:+UseParallelGC -XX:Per
mSize=20M -XX:MaxNewSize=32M -XX:NewSize=32M -Djava.library.path=jars -cla
sspath jars\gig.jar de.capri.ggig.BatchExecution)"

append specific files to JAVA command
javacmdparac <- paste(javacmdstrg,IniFile,XMLFile,BATCHFilePath,sep =
n n)

create bat file
runbat = paste@(GUIDir,"/runFarmDyn.bat")
if (file.exists(runbat)) x=file.remove(runbat)

= substr(runbat,1,2)

= c(b,paste('cd',gsub("/", "\\\\",GUIDir)))
= c(b,c("SET PATH=%PATH%;./jars"))

= c(b,javacmdparac)

writeLines (b, runbat)

rm(b)

[oae e ey
|

execute FarmDyn in batch mode
system(runbat)

Execute function runFarmDynfromBatch

runFarmDynfromBatch("C: /FARMDYNMANURE", "wecr_FarmDyn.ini", "wecr_ FarmDyn_de
fault.xml","batch", "batch16028.txt")

14
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

